Best of Behe: Blind Evolution or Intelligent Design?

In celebration of the 20th anniversary of biochemist Michael Behe’s pathbreaking book Darwin’s Black Box and the release of the new documentary Revolutionary: Michael Behe and the Mystery of Molecular Machines, we have highlighted some of Dr. Behe’s “greatest hits.” The following is a talk delivered at the American Museum of Natural History on April 23, 2002. Behe spoke as a participant on a panel including ID proponent William A. Dembski and evolutionists Kenneth R. Miller and Robert T. Pennock. Eugenie C. Scott of the National Center for Science Education moderated. An introduction was given by Richard Milner, editor of Natural History.


So, let’s begin with a sketch of the design argument. In the Origin of Species, Darwin emphasized that his was a very gradual theory; natural selection had to work by “numerous, successive, slight modifications” to pre-existing structures. However, “irreducibly complex” systems seem quite difficult to explain in gradual terms. What is irreducible complexity? I’ve defined the term in various places, but it’s easier to illustrate what I mean with the following example: the common mousetrap. A common mechanical mousetrap has a number of interacting parts that all contribute to its function, and if any parts are taken away, the mousetrap doesn’t work half as well as it used to, or a quarter as well — the mousetrap is broken. Thus it is irreducibly complex.


Yet modern science has discovered irreducibly complex systems in the cell. An excellent example is the bacterial flagellum which is literally an outboard motor that bacteria use to swim. The flagellum has a large number of parts that are necessary for its function — a propeller, hook, drive shaft, and more. Thorough studies shows it requires 30-40 protein parts. And in the absence of virtually any of those parts, the flagellum doesn’t work, or doesn’t even get built in the cell. Its gradual evolution by unguided natural selection therefore is a real headache for Darwinian theory. I like to show audiences this picture of the flagellum from a biochemistry textbook because, when they see it, they quickly grasp that this is a machine. It is not like a machine, it is a real molecular machine. Perhaps that will help us think about its origin.

I have written that not only is the flagellum a problem for Darwinism, but that it is better explained as the result of design — deliberate design by an intelligent agent. Some of my critics have said that design is a religious conclusion, but I disagree. I think it is wholly empirical, that is, the conclusion of design is based on the physical evidence along with an appreciation for how we come to a conclusion of design. To illustrate how we come to a conclusion of design, let’s look at the following. This is a Far Side cartoon by Gary Larson showing a troop of jungle explorers, and the lead explorer has been strung up and skewered. Now, everyone in this room looks at this cartoon and you immediately realize that the trap was designed. But how do you know that? How do you know the trap was designed? Is it a religious conclusion? Probably not. You know it’s designed because you see a number of very specific parts acting together to perform a function; you see something like irreducible complexity or specified complexity.


Some Darwinists have proposed that a way around the problem of irreducible complexity could be found if the individual components of a system first had other functions in the cell. For example, consider a hypothetical example such as pictured here, where all of the parts are supposed to be necessary for the function of the system. Might the system have been put together from individual components that originally worked on their own? Unfortunately this picture greatly oversimplifies the difficulty, as I discussed in Darwin’s Black Box. Here analogies to mousetraps break down somewhat, because the parts of the system have to automatically find each other in the cell. They can’t be arranged by an intelligent agent, as a mousetrap is. To find each other in the cell, interacting parts have to have their surfaces shaped so that they are very closely matched to each other. Originally, however, the individually acting components would not have had complementary surfaces. So all of the interacting surfaces of all of the components would first have to be adjusted before they could function together. And only then would the new function of the composite system appear. Thus the problem of irreducibility remains, even if individual components separately have their own functions.

{Behe is a genius and this is just excerpts of excerpts for the full article see below}

This is a portion of the original article to read the rest click on the link below.

Original Article:

This article was given in compliance with fair use policies if you would like to comment on it on this site do so at our forum:

1 view0 comments

Recent Posts

See All